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Introduction

What’s an instrumental variable
• We consider settings with unobservables that affect treatment and

outcomes.
• Econometricians have come a long way to define settings and

hypotheses that get you close to a randomized experiment. That’s
why these methods are sometimes refered to as “quasi-experiments”
or “natural experiments”

• This lecture is about instrumental variables (IV), one of the most
popular method used in empirical work to estimate the impact of a
policy.

• An instrument is a variable that affect treatment but has no direct
effect on outcomes.

• When we have such variables, we can use the variation of the
treatment that is caused by the instrument to identify the effect of
the treatment on the outcomes.
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What’s an instrumental variable

Consider a typical ”population regression”

Yi = α+ βDi +X′γ + µi (1)
• To estimate this model with OLS on a random sample, a critical

assumption is that cov(µi, Di|X) = 0 i.e. exogeneity
• This assumption is likely to be violated if:

• Unobserved heterogeneity: we may not observe all confounding
variables

• Di may be measured with error
• Simultaneity or reverse causality
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What’s an instrumental variable

What do IV do ?
In theory, instrumental variables offer a way to

• break the correlation cov(Di, µi)

• and obtain a consistent causal estimate of the treatment on Yi

Instrumental variable is based on two conditions:
1 First stage: the instrument predicts treatment well:

cov(Z,D) ̸= 0

2 Exogeneity: Instrument Z is exogenous, unrelated to the
structural error cov(Z, µ) = 0

3 exclusion restriction: The instrument has an effect on the
outcome only through the treatment variable.
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What’s an instrumental variable

The first-stage relationship is testable
• We can run a regression of D on Z
• it is also possible to include covariates

The exclusion restriction is not testable
• It is an identification assumption
• We need to make a convincing argument in favor of it
• This is difficult and the reason for heated debates in seminars

Some say: friends tell their friends not to use IV...
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What’s an instrumental variable

Intuition behind instrumental variables
• People/firms make optimal choices that affect their treatment

status
• Z is a shock that changes the behavior of at least some

people/firms
• Z has to be unrelated to people’s characteristics
• i.e. it should be assigned as good as randomly

Instrumental variable and experiments
• The instrument Z is a treatment/incentive that is offered to

units/people
• D measures if the unit actually takes up the treatment
• Instrumental variable work to deal with imperfect compliance

in experiment
• instrument Z should be as good as randomly assigned
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What’s an instrumental variable

Figure 1: Instrumental variable DAG

D

X (observed)

YZ

U (unobserved)

Other interpretation of instrumental variables
• Regressing Y on D and X with OLS uses all the variation in D to

explain Y, including the one caused by U. Hence the bias.
• IV uses only the variation in D that is related to Z
• So this means less variation is used, but at least Z is unrelated to U
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Instrumental variable equations: Two stage least square (2SLS)
• We consider a linear representation of the relationship between outcome

Y, treatment D and potential covariates X:

Yi = α+ βDi +X′
iγ + µi (2)

• This is the structural equation and writing it like that is already an
assumption

• We call the ”First stage” the relationship between treatment D and the
instrument Z (and potential covariates) in a linear equation:

Di = δ0 + δ1Zi +X′
iρ+ ϵi (3)

• We call the ”second stage” the regression of the outcome on X and the
prediction of the first stage D̂i:

Yi = α̃+ β̃D̂i +X′
iκ+ εi (4)

• We call the ”reduced form” the regression of the outcome on the
instrument Z and potential covariates X

Yi = λ0 + λ1Zi +X′
iτ + υi (5)
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The theory of instrumental variables

Instrumental variable equations: Two stage least square
(2SLS)

• It can be shown that the following estimator is a consistent estimator of
β under independence and exclusion cov(Z, µi) = 0

ˆβIV =
cov(Y, Z)

cov(D,Z)
=

λ̂1

δ̂1
(6)

• This estimator is nothing but the reduced form coefficient
λ̂1 = cov(Y,Z)

var(Z)
divided by the first stage coefficient δ̂1 = cov(D,Z)

var(Z)

• Two stage least square (2SLS) estimate a first and second stage that
estimate the structural relationship and retrieve a consistent estimate of β
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The theory of instrumental variables

Conceptual example
Let’s consider the relationship between income Y and education S where
we assume there’s ability bias such that we can write this linear structural
relationship: Yi = α+ δSi + γAi + µi

• When Ai cannot be observed, when we estimate Ŷi = α̂+ δ̂Si + µi

using OLS we get biased estimates of the coefficient of interest δ
• (In lecture II we showed that δ̂ = δ + γ Cov(Ai,Si)

σ2
S

)

• Suppose that we have a valid instrument Z that predict schooling S
well

• Z is a valid instrument if Zi ⊥ Ai, µi

Fougère & Heim
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The theory of instrumental variables

Conceptual example

• We write the first stage equation : Si = η + πZi + ϵi

• Coefficient π corresponds to the share of variation in S caused by Z.
• We can also write the reduced form: Yi = c+ βZi + ξi

• Often, the reduced form is interesting per se (for instance,
instrument can be eligibility for a policy and be interepreted as the
”intention to treat”).

• Let’s replace Si in the structural equation by the first stage:

Yi = α+ δ(η + πZi + ϵi) + γAi + µi

⇔ Yi = α+ δη︸ ︷︷ ︸
c

+ δπ︸︷︷︸
β

Zi + δϵi + γAi + µi︸ ︷︷ ︸
ξ
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The theory of instrumental variables

Conceptual example

Yi = α+ δη︸ ︷︷ ︸
c

+ δπ︸︷︷︸
β

Zi + δϵi + γAi + µi︸ ︷︷ ︸
ξ

• The structural parameter δ is identified by dividing the reduced form
coefficient by the first stage coefficient:

δ =
β

π
=

Cov(Yi, Zi)/σ
2
Zi

Cov(Si, Zi)/σ2
Zi

=
Cov(Yi, Zi)

Cov(Si, Zi)
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The theory of instrumental variables

Conceptual example
• It’s a two step procedure

1 Estimate first stage and predict Ŝi

2 Estimate structural model replacing S by the first stage
prediction Ŝi = Second stage

• That’s what two stage least square do.
N Don’t do these steps separately, if you do, the standard errors

of your second stage will be wrong for they do not take into
account the fact that the regressor is a prediction from the
first stage. These are forbidden regressions.

• Implement 2SLS directly using the appropriate commands. in
R the estimater package has the iv_robust function that
does that well, or fixest’s function feols.
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The theory of instrumental variables

When the instrument and treatment are binary
• When Zi is a dummy (0,1) and Di denotes treatment participation
• We can write the standard regression equation for treatment effect:

Yi = α+ δDi + εi
• Let’s rewrite it in expectation:

E[Yi|Zi = 1] = E[α|Zi = 1]︸ ︷︷ ︸
=α

+E[Di|Zi = 1]δ + E[ε|Zi = 1]

E[Yi|Zi = 0] = E[α|Zi = 0]︸ ︷︷ ︸
=α

+E[Di|Zi = 0]δ + E[ε|Zi = 0]

If Z is exogenous then E[ε|Zi = 1] = E[ε|Zi = 0] = 0

⇒ δ =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
=

reduced form
1st stage =

ITT

take-up
• This estimator is called the Wald estimator.
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Sciences Po 16 / 57



Introduction Theory Application Local average treatment effect Conclusions on instrumental variables References

The theory of instrumental variables

General model in matrix notation
• Reminder: The OLS estimator in matrix form is:

β̂OLS = (X′X)−1X′Y

• The First stage is a regression of X on Z so it would be in
matrix form:

β̂FS = (Z′Z)−1Z′X

• PZ = Z(Z′Z)−1Z′ is the projection matrix of the first
stage.

• The 2SLS estimator includes a projection of X on Z:

β̂2SLS =(X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1Z′Y

β̂2SLS =(X′PZX)−1X′PZY
(7)

Fougère & Heim
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The theory of instrumental variables

Variance of OLS and 2SLS
• Assuming homoskedasticity, the asymptotic variance of the
OLS estimator with K regressors in X is:

Âvar(β̂OLS) = σ̂2(X′X)−1

with σ̂2 = û′û
N−K

• The 2SLS equivalent is:

Âvar(β̂2SLS) = σ̂2(X̂′X̂)−1

= σ̂2(X′Z(Z′Z)−1Z′X)−1
(8)

• A weak first stage correlation will increase the variance of
the estimator and thus standard errors and reduce precision.
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The theory of instrumental variables

Instrumental variables’ troublesomenesses
1 Instruments may have have small effects: weak instruments

• Larger variance
• Inconsistency

2 Exclusion restriction: cannot be tested
3 Small sample biais
4 Heterogenous treatment effects
5 Modeling issues with 2SLS.
6 Interpretations with multiple instruments.
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The theory of instrumental variables

Weak instruments: inconsistency
• Consider the simultaneous equations model

yi = α+ βxi + εi

xi = µ+ πzi + vi.

• The OLS and IV estimators are given by

β̂OLS =
cov (yi, xi)

var (xi)

β̂2SLS =
cov (yi, x̂i)

var (x̂i)

• and the plims of the estimators are

plim β̂OLS = β + σxε
σ2
x

plim β̂2SLS = β + σx̂ε

σ2
x̂

.
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The theory of instrumental variables

Weak instruments: inconsistency
• This yields

plim β̂2SLS − β

plim β̂OLS − β
=

σx̂ε/σxε

σ2
x̂/σ

2
x

=
σx̂ε/σxε

R2
xz

• The inconsistency of the 2SLS estimator relative to the OLS estimator is
related to the relative endogeneity of z and x.

• Notice that R2
xz, is the R2 from the first stage regression.

• The instrument z may be almost as good as randomly assigned
but not quite.

• Hence, σx̂ε may be small but not quite zero.
• However, even if σx̂ε is small compared to σxε, the relative

inconsistency of the 2SLS estimator may still be important as long as
R2

xz is also small, i.e. as long as the correlation of z and x is low.
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The theory of instrumental variables

Weak instruments: what should we do ?
• We would test the joint significance of your instruments’ coefficients via

an F-test.
• In case you only have one instrument, this F-statistic is equivalent to the

square of the t-statistic of your instrument’s coefficient in the first stage.
• Old Rule of thumb: F-stat > 10 (Stock, Wright, and Yogo 2002) prove

to be too low (Keane and Neal 2022)
• If you consider using more than one instrument (Avoid if you can - see

sections after), show first the results of the just-identified model, using
your best instrument.

• Monte Carlo simulations show that just-identified 2SLS is approximately
unbiased

• But just-identified estimates are also unstable and imprecise
• Show the F-Statistic of the first stage
• Keane and Neal (2021) wrote a very clear paper on what to do with weak

instruments
A first-stage F well above 10 is necessary to give high confidence that
2SLS will outperform OLS. Otherwise, OLS combined with controls
for sources of endogeneity may be a superior research strategy to IV.
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Illustration: Angrist and Evans (1998) on child penalty

Context and research question
• In the US, the number of children per women decreased while at the

same time women participation in the labor market increased.
• Women who have children are less likely to work, and when they do, their

wage is lower than women who don’t have children, and even lower than
men, father or not.

⋆ Is it because having a child cause women to work less ? or is it some
women with specific latent caracteristics that choose to have children and
the differences reflect this selection process (or both, and so how much
effect is selection, how much is causal effet ?)

• Ideas on how to solve this problem ?

Identification strategy: gender preferences
• Angrist and Evans (1998) notice that parents with 2 children are more

likely to have a third child when their two first children have the same
gender.
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Context and research question

How they construct instruments
• Intuition: Parents have a preference for gender diversity among their

children and are more likely to have a third child when their two first
children have the same gender.

• it can be seen in the data and could be used as an instrument.

Is it a good instrument ?

• it predicts the probability of having a third child ⇒ First stage √

• children’s gender is not correlated with labour market outcomes ⇒
Exogeneity √

• Children’s gender has no effect on outcomes but through the effect on
the probability of having a third child ⇒ Exclusion √
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Context and research question

Data and estimation
• Standard linear equation : Yi = α+ βCi +X′

iγ + εi
• Y can be income, employment... C is a dummy for having 3

children or more ;
• instrument Z equals 1 when the two first children have the same

gender, 0 otherwise.
• They use census data from 1980 and 1990 in the US and restrict

the sample to women aged 21-35, maried or not with at least two
children

• In these data, 27 % of women aged 21 to 27 have at least two
children, ad 50 % of women aged 27 to 35.

• They remove older women because it’s likely that their children are
old enough to leave and wouldn’t be accounted in the data.
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Illustration: Angrist and Evans (1998) on child penalty

Replication
• Data from the 1980 census used by Angrist and Evans (1998)

are available in the package

library(ivmte)
AngristEvans <- ivmte::AE

• Let’s:
1 Run a linear regression of worked on morekids and controls if

we want
2 See whether samesex has an effect on morekids
3 Estimate the reduced form
4 Run the forbidden regression
5 Run 2SLS regression and estimate the effect of having a third

child on women participation to the labour market
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Illustration: Angrist and Evans (1998) on child penalty

Replication

# Run a linear regression of $worked$ on $morekids$ and controls if we
# want
naive <- lm_robust(worked ~ morekids, data = AngristEvans)
naivecov <- lm_robust(worked ~ morekids + black + hisp, data = AngristEvans)
# See whether $samesex$ has an effect on $morekids$
Firststage <- lm_robust(morekids ~ samesex, data = AngristEvans)
# Estimate the reduced form
reduced <- lm_robust(worked ~ samesex, data = AngristEvans)
# Run the forbidden regression
AngristEvans$predicted_child <- Firststage$fitted.values
forbidden <- lm_robust(worked ~ predicted_child, data = AngristEvans)
# Run 2SLS regression and estimate the effect of having a third child on
# women participation to the labour market
IV <- iv_robust(worked ~ morekids | samesex, data = AngristEvans)
IVcov <- iv_robust(worked ~ morekids + black + hisp | samesex + black + hisp,

data = AngristEvans)
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Illustration: Angrist and Evans (1998) on child penalty

With fixest:

# Run a linear regression of $worked$ on $morekids$ and controls if we
# want
library(fixest)
naive <- feols(worked ~ morekids, data = AngristEvans, vcov = "hetero")
naivecov <- feols(worked ~ morekids + black + hisp, data = AngristEvans, vcov = "hetero")
# See whether $samesex$ has an effect on $morekids$
Firststage <- feols(morekids ~ samesex, data = AngristEvans, vcov = "hetero")
# Estimate the reduced form
reduced <- feols(worked ~ samesex, data = AngristEvans, vcov = "hetero")
# Run the forbidden regression
AngristEvans$predicted_child <- Firststage$fitted.values
forbidden <- feols(worked ~ predicted_child, data = AngristEvans, vcov = "hetero")
# Run 2SLS regression and estimate the effect of having a third child on
# women participation to the labour market
IV <- feols(worked ~ 1 | morekids ~ samesex, data = AngristEvans, vcov = "hetero")
IVcov <- feols(worked ~ black + hisp | morekids ~ samesex, data = AngristEvans,

vcov = "hetero")
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Illustration: Angrist and Evans (1998) on child penalty

Replication

OLS Covariates First stage Reduced form Forbidden regression 2SLS 2SLS cov
(Intercept) 0.582*** 0.572*** 0.302*** 0.538*** 0.563*** 0.563*** 0.552***

(0.001) (0.001) (0.001) (0.002) (0.012) (0.012) (0.012)
morekids −0.142*** −0.144***

(0.002) (0.002)
black 0.172*** 0.169***

(0.004) (0.004)
hisp −0.014** −0.023***

(0.007) (0.009)
samesex 0.059*** −0.005**

(0.002) (0.002)
predicted_child −0.085**

(0.037)
fit_morekids −0.085** −0.083**

(0.037) (0.037)
Num.Obs. 209 133 209 133 209 133 209 133 209 133 209 133 209 133
R2 0.018 0.026 0.004 0.000 0.000 0.015 0.022
R2 Adj. 0.018 0.026 0.004 0.000 0.000 0.015 0.022
RMSE 0.49 0.49 0.47 0.50 0.50 0.49 0.49
Std.Errors Heteroskedasticity-robust Heteroskedasticity-robust Heteroskedasticity-robust Heteroskedasticity-robust Heteroskedasticity-robust Heteroskedasticity-robust Heteroskedasticity-robust
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Illustration: Angrist and Evans (1998) on child penalty

Results: interpretations
• Women with 3 children are -14.23 percentage points less likely to work

than women with two children
• Women with same sex children are 5.89 percentage points more likely to

have a third child than those with children of both gender.
• From the reduced form we see that having same sex children reduces the

probability to work by -0.5 percentage point.
• If an increase in the number of children by 6 percentage points reduces

the probability to work by -0.5 percentage points...
• Then an increase by one child reduces the probability to work by

−0.5
6

= −8.5

• For this reason, we often say that we “scale up” the reduced form by the
first stage
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Results: interpretations

So we have that ˆβIV < ˆβOLS. Does this make sense?
• Explanation 1: OLS estimator is upward biased (i.e. closer to
zero)

• there could be an omitted variable (for example family wealth)
• both the correlation with kids and the direct effect on hours

need to have the same sign
• e.g. cov(wealth; kids) > 0 and cov(wealth;hoursjkids) > 0

or both negative
• Explanation 2: IV effect measures the effect for a specific
population

• only 1 in 14 families “respond” to the instrument
• families who respond may not be the average family...
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Local average treatment effect

What do you think ?
Suppose we have two valid instruments for the same public policy

• Would the IV estimator be the same with both instruments ?
• Under what condition(s) will the estimates be equal?

Answer:
• If the treatment effect is constant for everyone
• If those who react to one instrument are the same as those

who react to the other instrument
• If treatment effect is heterogenous, we need additional

assumption to retrieve causal parameters.
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Local average treatment effect

Implicit homogenous treatment effect assumption so far
• You probably noticed that contrary to other sessions we didn’t use potential

outcomes notation so far.
• We derived IV estimator from regression notations and actually implicitely

assumed that the treatment effect we estimate is constant.

Allowing heterogneous treatment effect
• With heterogenous treatment effect, the IV assumptions are not sufficient to

retrieve causal effects. Fomral proof

• We need to change notation and add an additional assumption to use
instrumental variables

• Consider a case with a binary instrument Zi ∈ {0, 1} the the treatment statuses
• D1i = i’s treatment status when Zi = 1
• D0i = i’s treatment status when Zi = 0

• The observed treatment status is

Di = D0i +
(
D1i −D0i

)
Zi = π0 + π1iZi + ζi

• Note that the effect of the IV on treatment may differ across individuals
Fougère & Heim
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Allowing heterogneous treatment effect

First stage
• The previous notation gives us the first stage

Di = D0i + (D1i −D0i)Zi

= π0 + π1iZi + ζi

• E[D0i] = π0

• (D1i −D0i) = π1i is the individual effect of the instrument on treatment
participation

• A first assumption for IV to work is to have a first stage i.e. E[D1i −D0i] ̸= 0

Monotonicity
• ”If the instrument has no effect on some individuals, all those affected are in the

same direction”
• π1i ≥ 0 | π1i ≤ 0 ∀ i
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Allowing heterogneous treatment effect

An unkwnow partition of the population
We can divide the population into four groups depending on their
reaction to the instrument:

Table 1: Four sub-populations

Types D0i D1i

Never takers 0 0
Defiers 1 0
Compliers 0 1
Always takers 1 1

• Monotonicity implies that there is no defiers in the population
• From any dataset, it is impossible to see who belongs to what group
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Allowing heterogneous treatment effect

Independence

• The instrument is independent of potential outcomes and potential
treatment status: ↔ Zi assigned as good as random.(

Yi(D1, 1), Yi(D0, 0), D1i, D0i

)
⊥ Zi

• Independence is enough for a causal interpretation of the reduced
form

E[Yi|Zi = 1]− E[Yi|Zi = 0] = E[Yi(D1i, 1)|Zi = 1]− E[Yi(D0i, 0)|Zi = 1]

= E[Yi(D1i, 1)]− E[Yi(D0i, 0)]

• Independence also means the first stage captures the causal effect
of Z on treatment D.

E[Di|Zi = 1]− E[Di|Zi = 1] = E[D1i −D0i]
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Allowing heterogneous treatment effect

Exclusion
• Exclusion means there is only one causal path between the instrument and the

outcome, and that is through the effect on treatment status.
• We assume the variation in the ITT solely comes from the effect of compliers
• Fromally, it meanse that potential outcome Yi(d, z) is only a function of d

Yi(d, 1) = Yi(d, 0) ≡ Ydi pour d = 0, 1.

• So we can rewrite observed outcomes as a function of these potential outcomes

Yi = Y(0, Zi) +
(
Yi(1, Zi)− Yi(0, Zi)

)
Di

= Y0i + (Y1i − Y0i)Di

= α+ ρiDi + εi

• With E(Y0i) = α

• (Y1i − Y0i) = ρi is the individual treatment effect
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The LATE theorem (Imbens and Angrist 1994; Angrist, Imbens, and
Rubin 1996)

What we are looking for
If the following conditions are satisfied

• Independence
(
Yi(D1, 1), Yi(D0, 0), D1i, D0i

)
⊥ Zi

• exclusion Yi(d, 1) = Yi(d, 0) ≡ Ydi pour d = 0, 1.

• first-stage E[D1i −D0i] ̸= 0

• monotonicity D1i −D0i ≥ 0 | D1i −D0i ≤ 0 ∀ i

Then the WALD ratio estimates the local average treatment effect:

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
= E[Y1i − Y0i|D1i > D0i]

= E[ρi|π1i > 0]
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The LATE theorem (Imbens and Angrist 1994; Angrist, Imbens, and
Rubin 1996)

What is this local average treatment effect?
• Under these 4 hypotheses, the Wald ratio or 2SLS coefficient are

consistent estimates of the LATE, the average causal effect on the
compliers, and them only.

• Intuitively this makes sense because compliers are the only group on
which the data can be informative:

• Compliers are the only group with units observed in both treatments
(given that defiers have been ruled out).

• Always takers and never-takers are observed only in one treatment.
• The LATE is a controversial parameter,

• It is defined for an unobservable sub-population
• It is instrument dependent

• Therefore, it is no longer clear which interesting policy question it can
answer.
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Local average treatment effect

Better LATE than nothing ?
• Under A1-A4, IV ensures internal validity of the LATE
• But LATE has no (or little) external validity. Without further

assumptions
• we cannot generalize to the population
• we cannot generalize to different contexts

• Despite these shortcomings, LATE is often the best we can do
• Similar estimates from different contexts increase external validity
• There are many relevant positive and normative questions for which
• the LATE seems to be an interesting parameter in addition to being
• the only one we can identify without making unreasonable assumptions

(Imbens 2010)
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Local average treatment effect

Instrumental variables in experiments
• In experiments, it is often the case that compliance is
imperfect and comparison between treated and untreated
units are biased by endogenous participation

• With random assignment, it’s always possible to estimate the
intention to treat (ITT) which is the reduced form

• The Wald estimand will give us the average treatment effect
on compliers

• Special case: when non-compliance is one sided (non
compliers only in the assigned-to-treatment group), then the
instrumental variable estimator retrieves the Average
treatment effect on the treated (Frölich and Melly 2013).
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IV with covariates

The IV assumptions are different
• First stage: cov(Z,D|X) ̸= 0 has to be sufficiently strong
• Exclusion restriction: cov(Z, u|X) = 0 has to hold conditional
on X

• Monotonicity also has to hold conditional on X

Functional form is important !
• Saturated 2SLS in both 1st and second stage is necessary for

2SLS to retrieve the LATE with covariates (Blandhol
et al. 2022)

• However, researchers almost never do that. The LATE
interpretation of 2LS is rarely well formulated.

• Other methods may perform better.
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IV with multiple instruments

It is possible to have multiple instrumental variables
• 2SLS combines instruments to get a single (more precise)
estimate

Assumptions needed
• Each instrument must be as good as randomly assigned
• Each instrument needs to satisfy the exclusion restriction
• The joint first stage has to be strong enough

A model is just identified if there are as many instruments as
regressors, and is overidentified when there is more instruments
than regressors.
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Local average treatment effect

Continuous instruments
• It is also possible to obtain an IV estimate with a continuous
instrument and/or treatment

• The assumptions (first stage, exclusion restriction,
monotonicity) remain the same

• The LATE is more difficult to interpret
• units differ in their compliance intensity
• i.e. some react to the instrument more than others
• LATE is the weighted average of unit causal effects over the
support of D

• weights are determined by the share of compliers in each bin
of D

• Often useful to use the binary case as reference (high/low
intensity of treatment and instrument)
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Outline

1 Introduction

2 The theory of instrumental variables

3 Illustration: Angrist and Evans (1998) on child penalty

4 Local average treatment effect

5 Conclusions on instrumental variables
Where do we find good instruments ?
Cookbook for IV
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Conclusions on instrumental variables

Where do we find good instruments ?
• Theory combined with clever datas collection. Examples

• Distance from job training centers
• College openings

• Variation in policies. This requires a deep institutional
knowledge. Examples

• assignment to judges with different severity
• differences in budgets across job training centers
• school lotteries and other algorithm-based assignments
• …

• Nature. Examples
• different levels of pollution in different places
• sex of the first two children
• …
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Cookbook for IV

Explain your identification clearly
• start with the ideal experiment; why is your setting different?
Why is your regressor endogenous?

• Explain theoretically why there should be a first stage and
what coefficient we should expect

• Explain why the instrument is as good as randomly assigned
• Explain theoretically why the exclusion restriction holds in
your setting

Show and discuss the first stage
• Best to start with a raw correlation
• Do the sign and magnitude make sense?
• Assess the strength of the instrument using state-of-the-art
techniquesFougère & Heim
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Cookbook for IV

Bring supportive evidence for instrument validity
• Show that the instrument does not predict pre-treatment
characteristics

• Can you provide evidence in support of the exclusion
restriction?

• Compare complier characteristics with never-takers’.

Bring supportive evidence for instrument validity
• Show the OLS and 2SLS results, both with varying sets of
controls

• Comment on the differences between both (bias, LATE, etc)
• Show the reduced form
• ”If the reduced form isn’t there, the effect isn’t there”
(Angrist and Pischke 2008)

Fougère & Heim
Sciences Po 50 / 57



Introduction Theory Application Local average treatment effect Conclusions on instrumental variables References

Bibliography I

▶ Angrist, Joshua, and William Evans. 1998. “Children and Their Parents’ Labor Supply: Evidence from Exogenous
Variation in Family Size.” The American Economic Review , Jun., 1998, Vol. 88, No. 3 (June): w5778.

▶ Angrist, Joshua D, Guido W Imbens, and Donald B Rubin. 1996. “Identification of Causal Effects Using
Instrumental Variables.” Journal of the American Statistical Association 91 (434): 444–455.

▶ Angrist, Joshua D., and Jörn-Steffen Pischke. 2008. Mostly Harmless Econometrics: An Empiricist’s Companion.
Princeton University Press.

▶ Blandhol, Christine, Magne Mogstad, John Bonney, and Alexander Torgovitsky. 2022. “When Is TSLS Actually
LATE?” Preprint, February 9, 2022.

▶ Frölich, Markus, and Blaise Melly. 2013. “Identification of Treatment Effects on the Treated with One-Sided
Non-Compliance.” Econometric Reviews 32, no. 3 (March 1, 2013): 384–414.

▶ Imbens, Guido W. 2010. “Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and
Urzua (2009).” Journal of Economic Literature 48, no. 2 (June): 399–423.

▶ Imbens, Guido W, and Joshua D Angrist. 1994. “Identification and Estimation of Local Average Treatment
Effects,” 12.

▶ Keane, Michael, and Timothy Neal. 2021. “A Practical Guide to Weak Instruments,” 37.

▶ . 2022. “A Practical Guide to Weak Instruments.” Discussion Papers, Discussion Papers, nos. 2021-05d
(June).

Fougère & Heim
Sciences Po 51 / 57



Introduction Theory Application Local average treatment effect Conclusions on instrumental variables References

Bibliography II

▶ Stock, James H, Jonathan H Wright, and Motohiro Yogo. 2002. “A Survey of Weak Instruments and Weak
Identification in Generalized Method of Moments.” Journal of Business & Economic Statistics 20, no. 4
(October): 518–529.

Fougère & Heim
Sciences Po 52 / 57



Appendix

Outline

6 Appendix
Demonstrating the LATE theorem
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Appendix

Demonstrating the LATE theorem

Main instrumental variable hypotheses

1 Independance
(
Yi(D1, 1), Yi(D0, 0), D1i, D0i

)
⊥ Zi

2 exclusion Yi(d, 1) = Yi(d, 0) ≡ Ydi pour d = 0, 1.

3 first-stage E[D1i −D0i] ̸= 0

We use exclusion to write:

E[Yi|Zi = 1] = E[Y0i + (Y1i − Y0i)Di|Zi]

And with independence:

⇒ E[Yi|Zi = 1] = E[Y0i + (Y1i − Y0i)D1i]

Similarly we write:
E[Yi|Zi = 0] = E[Y0i + (Y1i − Y0i)Di]
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Demonstrating the LATE theorem

Reduced form

E[Yi|Zi = 1]− E[Yi|Zi = 0] = E[Y0i] + E[(Y1i − Y0i)D1i]

− E[Y0i] + E[(Y1i − Y0i)D0i]

= E[(Y1i − Y0i)(D1i −D0i)]

We use the law of iterated expectation

E[(Y1i − Y0i)(D1i −D0i)] = E[(Y1i − Y0i)|D1i > D0i]Pr(D1i > D0i)

− E[(Y1i − Y0i)|D1i < D0i]Pr(D1i < D0i)︸ ︷︷ ︸
Defiers

Without monotonicity, we may have situations where the reduced form is null
or negative whereas the true effect is positive for everyone.
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Appendix

Demonstrating the LATE theorem

Assuming monotonicity

E[Yi|Zi = 1]− E[Yi|Zi = 0] = E[(Y1i − Y0i)|D1i > D0i]Pr(D1i > D0i)

− E[(Y1i − Y0i)|D1i < D0i]Pr(D1i < D0i)︸ ︷︷ ︸
=0

= E[(Y1i − Y0i)|D1i > D0i]︸ ︷︷ ︸
effect on compliers

Pr(D1i > D0i)

Similarly we find

E[Di|Zi = 1]− E[Di|Zi = 0] = E[D1i −D0i]

= Pr(D1i > D0i)

Therefore, the Wald estimand identifies the average treatment effect on compliers:

βWald =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
= E[(Y1i − Y0i)|D1i > D0i]

Back
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