
introduction Randomisation Pro, Cons & How-to Analysis Estimations Wrap-up References Appendix

Session II
Randomized experiments and conditional

independence

Evaluating public policies

Arthur Heim (PSE & Cnaf)

Source: Heckman, Pinto, and Savelyev (2013) ; effect of Perry Preschool Program on IQ for girls

February 6, 2023

Fougère & Heim 2022-2023
Sciences Po 1 / 71



introduction Randomisation Pro, Cons & How-to Analysis Estimations Wrap-up References Appendix

Outline

1 introduction

2 Randomisation: An introduction

3 Randomisation: Pro, & and How to

4 The analysis of randomised experiments

5 Estimations: Special focus on regressions

6 Wrap-up

7 Appendix
Fougère & Heim 2022-2023
Sciences Po 2 / 71



introduction Randomisation Pro, Cons & How-to Analysis Estimations Wrap-up References Appendix

introduction

What we have seen so far
• We introduced the notations and framework of the Rubin

1974 causal model
• The core : postulate the existence of potential outcomes

corresponding to the possible states of the world according to
the presence or absence of the policy to be evaluated.

• Some causal parameters of interest can be identified and
estimated with appropriate hypotheses, design and measures.

• = Identification strategy
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introduction

Today’s agenda
• Randomisation: Where it comes from, how it’s done.
• Regressions
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Randomisation: An introduction
The ”magic” of randomisation

What is and what’s not randomisation (1/2)
• Randomisation is the process of making something random.
• A random process is a sequence of random variables describing a process

whose outcomes do not follow a deterministic pattern, but one that
can be described by probability distributions.

• For example, a random sample of individuals from a population refers to
a sample where every individual has a known probability of being
sampled. We use this sampling probability to infer plausible values of
parameters of the full population with the statistics from the sample

• Large random sample ensure representativeness of the population and
more precise estimates i.e. less sampling variability

• The sampling variability of an estimate is a measure of how much the
estimate may vary from sample to sample
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Randomisation: An introduction
The ”magic” of randomisation

What is and what’s not randomisation (2/2)
• Randomized experiments are lotteries that randomly assign subjects from

a sample to research groups, each of which is offered a different treatment
• Random assignment ensure balance between groups ⇒ no ex-ante

differences ; post-treatment average differences estimate the average
treatment effect in this sample.

• The sample from a randomized experiment may or may not be a
random sample. These are two distinct issues.

• Randomisation ensures internal validity i.e. unbiased estimator of
treatment effects in this sample.

• Large randomized experiments give more precise estimators, but inference
to a larger population depend on the sampling process, participants’
awareness, the specific time and location, etc.

• Issues of external validity
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Randomisation: An introduction
Experiments in social sciences

Origin and diffusion
• The method is usually attributed to Fischer (1935) and Neyman (1934)
• When the method is implemented properly, average differences in future

outcomes for experimental groups provide unbiased estimates of the
impacts of the treatments offered

• From 1945 to 2000 over 350 000 randomized clinical trials have been
conducted

• The use of randomized experiments for social research has greatly
increased since the U S War on Poverty in the 1960’s
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Randomisation: An introduction
Experiments in social sciences

Figure 1: Number of randomised controlled trials in education completed
internationally between 1980 and 2016 reviewed by Connolly, Keenan,
and Urbanska (2018)
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Randomisation: An introduction
Experiments in social sciences

Some of my favorite experiments
• Early childhood education:

• Heckman, Pinto, and Savelyev 2013
• Orla Doyle. 2020. “The First 2,000 Days and Child Skills.” Journal of

Political Economy 128, no. 6 (June): 2067–2122
• Cash transfers:

• Lisa Gennetian et al. 2022. Unconditional Cash and Family Investments in
Infants: Evidence from a Large-Scale Cash Transfer Experiment in the U.S.
w30379. Cambridge, MA: National Bureau of Economic Research, August

• Cornelius Christian and Christopher Roth. 2016. “Can Cash Transfers
Prevent Suicides? Experimental Evidence from Indonesia.” SSRN Journal

• Labor market
• Crépon et al. 2013a (To analyze next week !)
• Luc Behaghel, Bruno Crépon, and Marc Gurgand. 2014. “Private and

Public Provision of Counseling to Job Seekers: Evidence from a Large
Controlled Experiment.” American Economic Journal: Applied Economics
6, no. 4 (October 1, 2014): 142–174
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Randomisation: An introduction
Experiments in social sciences

Some of my favorite experiments
• Reducing hate:

• Dominik Hangartner et al. 2021. “Empathy-Based Counterspeech Can
Reduce Racist Hate Speech in a Social Media Field Experiment.”
Proceedings of the National Academy of Sciences 118, no. 50
(December 14, 2021): e2116310118

• David Broockman and Joshua Kalla. 2016. “Durably Reducing
Transphobia: A Field Experiment on Door-to-Door Canvassing.” Science
352, no. 6282 (April 8, 2016): 220–224

• Toss coin for major life decision
• Steven D Levitt. 2021. “Heads or Tails: The Impact of a Coin Toss on

Major Life Decisions and Subsequent Happiness.” The Review of
Economic Studies 88, no. 1 (January 1, 2021): 378–405

• Psychology: poverty and cognitive functioning
• A. Mani et al. 2013. “Poverty Impedes Cognitive Function.” Science 341,

no. 6149 (August 30, 2013): 976–980
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Randomisation : a mansplaining story
The lady tasting tea

• In the 1920s, statistician Ronald Fisher introduced a new
method for statistical inference called randomization inference

• One famous example of this method is Fisher’s ”Lady Tasting
Tea” experiment, reported in his book ”The design of
experiments” (Fischer 1935)

• Context: It’s a summer party in Cambridge, and Fisher and
other academics are drinking tea when a woman made an bold
claim.

• Muriel Bristol, a British phycologist claimed to be able to tell
whether the tea or the milk was added first to a cup.

• “Nonsense,” returned Fisher, smiling, “Surely it makes no
difference.” But she maintained, with emphasis, that of course
it did. and her soon-to-be-husband added “Let’s test her.”

• Fisher randomly arranged eight cups of tea, four made with
milk added first and four made with tea added first, and
presented them to Lady Bristol.

• Lady Bristol tasted the 8 cups and correctly classified the 4
cups with milk poured first (the way she prefers)

• Would that be convincing enough for R. Fischer ?
Fougère & Heim 2022-2023
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Randomisation : a mansplaining story
The lady tasting tea

1 First, we need to determine the null hypothesis, which is the
hypothesis that lady Bristol is no better at distinguishing
between the two types of tea than chance alone would allow.

2 Next, we need to determine the probability of obtaining the
observed result (i.e., correctly identifying all four cups of tea
made with milk added first) under the null hypothesis. In
this case, the probability is simply the number of ways to
arrange the cups such that she would get all four correct
divided by the total number of possible arrangements.
There are

(
8
4

)
= 70 ways of selecting 4 cups among 8. Under

the null hypothesis, there is thus one set of 4 cups chosen
among 8 cups out of 70 possible combinations of 4 cups
among those 8 cups that she could pick by chance.
1
70 =1.43 %.

3 The probability that she gave the right combination by sheer
luck is less than 2 %, which correspond to the exact p-value
of the test (Fisher’s exact p-value)
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Randomisation : a mansplaining story

Figure 2: The statistical test is permutation under the null
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Randomisation : a mansplaining story

How does that relate to impact evaluation ?
• Fisher was interested in testing sharp null hypotheses, that

is, null hypotheses under which we can infer all the missing
potential outcomes from the observed ones.

• Going back to Rubin’s notation, a sharp null hypothesis for
the treatment-control problem is :

H0 : Yi(1) = Yi(0) ∀ i

• No treatment effect for anyone. The implicit alternative
hypothesis is that there is at least one unit i such that
Yi(0) ̸= Yi(1).

• Given the sharp null hypothesis, we can infer all the missing
potential outcomes through permutation.
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Randomisation: Pro, & and How to

Reminder from last week
• Consider a policy that either make people ”treated” or ”untreated” (e.g.

being in a small or large class)
• Let i denote a principal sample unit (PSU) (individual, household, firm...)

and let Y be an outcome of interest (e.g. test score at the end of 3rd
grade)

• Let Di be the observed variable indicating treatment status
Di = 1(Treated)

• Every individual can theoretically be treated or untreated and for a given
individual i, there exist different potential values for their outcomes:
Yi(1), their outcome when treated and Yi(0) when they aren’t.

• When individual i is treated their observed outcome is Yi = Yi(1), when
they are not we observe Yi = Yi(0).

• Potential outcomes can be linked to observed outcome and treatment
through a switching equation

Yi = DiYi(1) + (1−Di)Yi(0)
Yi = Yi(0) + (Yi(1)− Yi(0)Di

(1)
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Reminder from last week

Average observed differences and selection bias
• We can decompose the simple average difference in ouctome (SDO) by

treatment status to extract parameters of interests
• Under SUTVA, observed outcomes Yi reveal potential outcomes Yi(·) for

the relevant units

E
[
Yi|Di = 1

]
− E

[
Yi|Di = 0

]
︸ ︷︷ ︸

Simple difference (SDO)

= E
[
Yi(1)|Di = 1

]
− E

[
Yi(0)|Di = 0

]

• We add and substract counterfactual values for treated individuals:

= E
[
Yi(1)|Di = 1

]
−E[Yi(0)|Di = 1]+E[Yi(0)|Di = 1]−E

[
Yi(0)|Di = 0

]
= E

[
Yi(1)− Yi(0)|Di = 1

]
︸ ︷︷ ︸

ATT

+E
[
Yi(0)|Di = 1

]
− E

[
Yi(0)|Di = 0

]
︸ ︷︷ ︸

Selection bias

• The selection bias measures how different the treated and control groups
are (on average) in terms of their potential outcomes in the absence of
treatment
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Randomisation: Pro, & and How to

Why randomisation removes selection bias
• Randomization makes the random treatment status Di independent of

potential outcomes Yi(1) and Yi(0): ⇒ Di ⊥ Yi(0), Yi(1)
• Reminder: If two random variables Y and X are independent, then

E[Y | X = x] = E[Y ]

• Thus, randomization implies that
E[Yi(0) | Di = 1] = E[Yi(0) | Di = 0] = E[Yi(0)] which implies in turn
that the selection bias vanishes out:

E[Yi(0) | Di = 1]− E[Yi(0) | Di = 0] = 0

• The mean SDO in the two groups is an estimate of the ATT parameter,
but also of the Average Treatment Effect (ATE):

E[Yi(1) | Di = 1]− E[Yi(0) | Di = 0] = E[Yi(1) | Di = 1]− E[Yi(0) | Di = 1]︸ ︷︷ ︸
ATET

= E[Yi(1)]− E[Yi(0)]︸ ︷︷ ︸
ATE
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Strenghs and weakness of randomization
Strenghts

I: Removing selection bias
• Random assignment remove selection biais and retrieve causal estimates when

well implemented
• On average, research groups have the same characteristics ex-ante (even

unobservables)
♭ In small samples, random assignment can leave some imbalance across groups.

Those are sampling errors

II: Controlling uncertainty
• In a design-based framework we can decompose the total variability between

sampling variability and variability due to randomization (Abadie et al. 2020)
• Different approaches for inference

III: No extra assumption required
• When treatment is truely randomly assign and the experiment is not

compromized by attrition or other issues, then there is no need for extra
modeling assumption
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Strenghs and weakness of randomization
Weaknesses

Acceptability and ethics
• Policy makers may find it hard to select units randomly as some people will

necessarily be denied access (legal issues, equality, political cost).
• Population may reject such design if they perceive it as unfair, or fostering

injustice, or dangerous
• Ethics of research with human subject (See Resnik 2018): principle of ”clinical

equipoise”, information and consents, risk mitigation, etc.

Bias in experiments
• The sample from an experiment may be different from a more general population

even when randomly sampled because people may react to the experiment itself.
• Replicability, power and sample size
• Bad research practices: threatening participants to increase follow-up, adding

observation up to a point where results are satisfactory

Substitution bias
• The treatment may be a subsitute to another policy and the counterfactual may

not be well identified. Example: Head Start provided formal childcare in the US
but the counterfactual is a mixture of parental care and already available
informal childcare. See e.g. Kline and Walters (2016)
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Strenghs and weakness of randomization
Using real world constraints for experiments

Political advantage of randomisation
• Lotteries are simple, easily understood and may be very transparent
• Useful and legit when there are no other reason to select participants
• May be seen as fair compared to other criteria

Ressource limitation of staggered adoption
• Many policies have limited ressources and cannot reach the whole population

immediately.
• Sometimes there are more eligible people than actual participants, we can

manipulate information or incentives to foster participation
• Staggered adoption affect different individual subsequently and provide sources

for comparisons
• These constraints can be use to implement policy evaluation, randomly if

possible
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How to randomise ?
1 Individual random assignment

• Bernoulli trial:flip coins for each person in the experiment.
♭ may not balance group sizes especially in smaller samples.

• Completely randomized experiments: a fixed number of units, say Nt, is
drawn at random from the population of N units to receive the active
treatment, with the remaining Nc = N−Nt assigned to the control
group. Each unit has the same treatment probability

♭ Bad luck may bring unbalance on some important characteristics,
especially in small samples.
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Randomisation in practice

How to randomise
2 More sophisticated random assignments

• Block random assignment:From a set of known attributes, Classify
individuals in J mutually exclusive blocks (or strata) and run a completly
randomized experiment within block.

• Ensure balance w.r.t. attributes that define blocks → more precise
estimate because it control between-block differences and only uses
within-block variation.

♭ Conditional ignorability. outcomes Yi(1) and Yi(0) are
conditionally independent of the assignment variable Di given that
the unit belongs to block bj = (Bi = bj)

• Clustered randomized design: If units i belong to a larger structure (e.g.
classroom, school, village,...) with similar characteristics or which cannot
be separated, one can randomly assign treatment to the cluster, thus
treating everyone in treated clusters and nobody in untreated clusters.

♭ The principal sampling unit is the cluster, treatment effect comes
from variation across clusters. Large precision loss.

Can use more sophisticated design with block-cluster random
assignment, or block-pair random assignment
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Randomisation in practice

How to randomise
3 Randomisations using practical constrains

• Randomisation at the bubble:Some policies may be determined by a set
of criteria and you want to test wether providing access to those at the
margin of these criteria would benefit.

• Take individuals at the margin at randomly assign treatment with the
appropriate design.

♭ Only valid for the marginal population
• Phase in design: Take advantage of staggered adoption by randomly

assigning order or waves of treatment
• everybody gets treated eventually so people may be more willing to

accept randomisation
♭ If outcomes are measured for those who are treated, we cannot

have long term impacts because everybody gets treated.
• Not a problem when outcomes are measured at another level (for

phase-in training for teachers where outcomes are measured over
students)
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The analysis of randomised experiments

Exact P-values for Sharp Null Hypotheses
• In order to conduct randomization inference, we need to supply 1) a test

statistic, 2) a null hypothesis, and 3) a randomization procedure.
• a sharp null hypothesis for the treatment-control problem is :

H0 : Yi(1) = Yi(0) ∀ i

T ave = Ȳ obs
t − Ȳ obs

c =
1

Nt

∑
i:Di=1

Y obs
i −

1

Nc

∑
i:Di=0

Y obs
i .

• We can calculate the probability, over the randomization distribution, of the
statistic taking on a value as large, in absolute value, as the actual value given
the actual treatment assigned. This calculation gives us the p-value for this
particular null hypothesis.

• In other words, we compute the mean difference over all possible assignment of
the treatment status (i.e. we re-arrange observations in treatment and control
groups), and compare the share of mean differences that are higher/lower than
the observed mean differences.

♭ The number of possible permutations rise exponentially with sample size and
rapidely becomes computationaly infeasible. Instead, we can randomly sample
over the permutation distribution.
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The analysis of randomised experiments
Exact P-values for Sharp Null Hypotheses

Simulated example
• Imagine a hypothetical experiment in which 2 of 7 villages randomly elect a

female council head and the outcome is the share of the local budget allocated
to water sanitation per inhabitant (in $) (example in the RI package for R)

City Z Y

Village 1 1 25
Village 2 0 15
Village 3 0 20
Village 4 0 20
Village 5 0 10

Village 6 0 15
Village 7 1 30
term estimate p.value
Z 11.5 0.047619
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The analysis of randomised experiments
Exact P-values for Sharp Null Hypotheses

Simulated example

Z

−10 −5 0 5 10

0

1

2

3

4

5

Simulated Estimates

Estimate Observed Value

Randomization Inference

Figure 3: Randomisation inference: illustration
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The analysis of randomised experiments
Exact P-values for Sharp Null Hypotheses

On exact p-value
• Although the observed outcomes do not change for any unit under the

null hypothesis, the value of the statistic changes because who is in the
treatment group and who is in the control group changes.

• The p-value associated with this statistic is 0.048, suggesting we should
reject that women-led city council has no effect on sanitation spending.

• Randomisation inference can accommodate more sophisticated designs,
larger sample sizes (we sample the permutation distribution instead of
computing all possible permutations), different statistics.

• Sharp null test are very restrictive, test the absence of presence of
treatment effect for at least one unit, not the average difference.
Inference for average treatment effect derives from Neyman (1934) work.
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The analysis of randomised experiments
Randomization Inference for Average Treatment Effects

A simple difference in mean estimator
• Two conceptual views of an experiment:

1 Finite population: analysis of completely randomized experiments,
taking as fixed the potential outcomes in the population and the
variability only comes from the randomisation.

2 Infinite population: random sample from an infinite population, use
large sample approximation for inference

• Usual approach: large sample approximation.
• Consider a sample of size N = N0 +N1 where the N1 individuals were

randomly assigned to treatment and comply with their assignment, and
N0 act as controls.

• The average treatment effect on the sample is :

τ̂ = Ȳ1 − Ȳ0 = 1
N1

∑
N1

Yi − 1
N0

∑
N0

Yi

= 1
N1

∑
N1

Yi(1)− 1
N0

∑
N0

Yi(0)
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The analysis of randomised experiments
Randomization Inference for Average Treatment Effects

A simple difference in mean estimator

Figure 4: Simple randomisation: illustration
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The analysis of randomised experiments
Randomization Inference for Average Treatment Effects

Variance in finite population
Imbens and Rubin (2015) show that sampling variance over the randomisation
distribution is:

V(τ̂) = S2
0

N0
+

S2
1

N1
−

S2
1,0

N

where S2
0 and S2

1 are the variances of Yi(0) and Yi(1) in the sample, defined as:

S2
0 =

1

N − 1

N∑
i=1

(
Yi(0)− Ȳ (0)

)2
, and S2

1 =
1

N − 1

N∑
i=1

(
Yi(1)− Ȳ (1)

)2
and S2

1,0 is the impossible to observe sample variance of the unit-level
treatment effects, defined as:

S2
1,0 =

1

N − 1

N∑
i=1

(
Yi(1)− Yi(0)− (Ȳ (1)− Ȳ (0))

)2
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The analysis of randomised experiments
Randomization Inference for Average Treatment Effects

Neyman Variance and population variance
• In practice researchers therefore use the estimator for V(τ̂) based on

estimating the first two terms by S2
0 and S2

1 , and ignoring the third term:

VNEY MAN =
S2

0
N0

+
S2

1
N1

• This leads in general to an upwardly biased estimator for V(τ̂), and thus
too conservative confidence intervals

• There are two important cases where the bias vanishes
1 if the treatment effect is constant the third term is zero
2 if we view the sample at hand as a random sample from an infinite

population, then VNEY MAN is unbiased for the variance of V(τ̂) viewed
as an estimator of the population average treatment effect E[Yi(1)−Yi(0)]

• Assuming a large population, the standard error of the treatment effect
is:

SEτ̂ = SE(Ȳ1 − Ȳ0) =

√
S2

0
N0

+
S2

1
N1

(2)

Proof
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The analysis of randomised experiments
Randomization Inference for Average Treatment Effects

Confidence intervals
• We base the confidence interval on a normal approximation to the

randomization distribution of τ̂ .
• If we wish to construct a central confidence interval with nominal

confidence level (1−α)× 100%, as usual we look up the α
2
and 1−α

2

quantiles of the standard normal distribution, denoted by zα/2, and
construct the confidence interval:

CI1−α(τ̂) = (τ̂ − zα/2 · SEτ̂ , τ̂ + zα/2 · SEτ̂ ).

• When α = 5 %, z.05/2 ≈ 1.96, when α = 10 %,z.1/2 ≈ 1.645
• This approximation applies when using any estimate of the sampling

variance, and, in large samples, the resulting intervals are valid confidence
intervals under the same assumptions that make the corresponding
estimator for the sampling variance an unbiased or upwardly biased
estimator of the true sampling variance.
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Estimations: Special focus on regressions

Regressions: the horseshoe of impact evaluation
• Regression analysis is a set of statistical methods for estimating the

relationships between a dependent variable and one or more independent
variables

• You are (normally) familiar with bivariate linear regressions: drawing a
straight line that fit a scatter plot by minimizing vertical distance between
the points and the line: the Ordinary least square (OLS) or Moindres
carrés (ordinaires) (MCO) in French.

• There are many other methods (Generalized least square, method of
moments, maximum likelihood, non-parametric regressions,
semi-parametric regressions,...)

• Regressions are Estimation methods that can, under certain conditions,
retrieve the target parameters of our identification strategy.

Fougère & Heim 2022-2023
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Estimations: Special focus on regressions

The ordinary least square (OLS)
• The OLS regression plays a special role in econometrics and causal

inference
• Gauss-Markov theorem: OLS is the Best Linear Unbiased Estimator if

errors are uncorrelated with mean zero and homoscedastic with finite
variance (see Cunningham (2018, Sections 2.10 to 2.24))

• Multivariate regressions allow to ”control for” other characteristics
• Well implemented regressions can sometime exactly estimate the target

parameter defined in the identification strategy
• OLS Regressions or variations are used for almost all identification

strategies we’ll see in this class
N Estimating models are super easy with modern softwares. Understand

what’s under the hood when you run a command !
N We cover intuition here but it’s probably not enough, read the textbooks !
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The ordinary least square (OLS)

The conditional expectation function
• The CEF for a dependent variable, Yi given a k × 1 vector of

covariates, Xi (with elements Xik) is the expectation, or
population average of Yi with Xi held fixed.

• For a specific value of Xi, say Xi = x, we write
E[Yi | Xi = x].

• For continuous Yi with conditional density fy (· | Xi = x), the
CEF is

E[Yi | Xi = x] =

∫
t fy (t | Xi = x) dt

• If Yi is discrete, E[Yi | Xi = x] equals the sum∑
t tfy (t | Xi = x) .
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The ordinary least square (OLS)

The conditional expectation function
• Another important property is the Law of Iterated Expectations (LIE):

E[Yi] = E
[
E[Yi|X]

]
• Which brings us to this decomposition theorem:

Yi = E[Yi|Xi] + εi (3)

Where εi is en error term that’s mean independent of Xi and thus uncorrelated
with any function Xi

• Considere the following population linear equation:

Yi = α+X′
iβ + εi (4)

• If the conditional expectation function is linear, then the OLS estimator it is !
• Linear models doesn’t mean linear relationships. OLS can accomodate many

non-linear relationships (splines, polynomials, discontinuities, categorical
variables...) and variable transformations
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The ordinary least square (OLS)

Let’s change X in D, see the implication
• Consider a randomized experiment of a random sample where treatment Di is

randomly assigned to 1/2 of the sample and let Yi be an outcome of interest.
• Average treatment effect is ATE = E[Yi(1)]− E[Yi(0)]
• using the decomposition theorem:

Yi = E[Yi|Di] + εi

= E[Yi|Di = 0]
(
1− Pr(Di = 1)

)
+ E[Yi|Di = 1]Pr(Di = 1) + εi

• Hence estimating the regression Yi = α+ βDi + εi gives E[Yi|Di] = α+ βDi
• Thus, E[Yi|Di = 0] = α and E[Yi|Di = 1] = α+ β and under random

assignment, random sampling and SUTVA:

β = E[Yi|Di = 1]− E[Yi|Di = 0] = E[Yi(1)− Y (0)] ≡ ATE

• The OLS regressions of a randomly assigned treatment on the dependent
variable give the ATE
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The ordinary least square (OLS)

The Least Squares Assumptions in the Multiple Regression
Model

• Consider the population regression model :

Y = β0 + β1X1 + β1X2 + · · ·+ βkXk + ε

• The OLS regression over a sample of size n yield unbiased estimates of the
coefficients if: (Wooldridge 2012)

1 The relationship between Y and X are linear in parameters
2 All variables (X1i, X2i, . . . , Xki, Yi) , i = 1, . . . , n, are independent and

identically distributed, randomly drawn from the population.
3 ui is a (population) error term and is independent of all regressors.

Formally, it has conditional mean zero given the regressors, i.e.,

E[ui | X1i, X2i, . . . , Xki] = 0

4 There is some sample variation in the explanatory variable (or no perfect
multicollinearity).

• If these assumptions hold, the OLS estimator is unbiased. In large samples1,
β̂1, β̂2, . . . β̂K are jointly normally distributed. Further, each β̂k ∼ N

(
βk, σ

2
βk

)
.

1. In smaller sample, it follows a student distribution.Fougère & Heim 2022-2023
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The ordinary least square (OLS)

Homoscedasticity
• A 5th hypothesis is often invoked of constant variance of the error:

E[u2
i |X] = σ2 = E[u2]

• This assumption stipulates that our population error term, u, has the
same variance given any value of the explanatory variable, x.

• In other words, the variance of the errors conditional on the explanatory
variable is simply some finite, positive number. And that number is
measuring the variance of the stuff other than x that influence the value
of y itself.

• Under homoscedasticity, the variance of the error is estimated by
σ̂2 = ee′

N−K
where e is the residual of the OLS regression over the K

variables.
• Standard error are the estimate of the sampling variability of the

estimator: SE(β̂k) =
σ̂2
√
N
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The ordinary least square (OLS)

Hypotheses testing and confidence intervals
• We can test the estimated value β̂k against a null hypothesis βk0 and

compute the T-stat:

tβ̂k
=

β̂k − βk0

SE(β̂k)

• We can compute confidence interval using asymptotics of this t-stat :
IC1−α = β̂k ± Φ−1( 1−α

2
)× SE(β̂k)

• Correct estimates of SE(β̂k) are as important as the coefficients, and yet
it is sometimes not well considered2

• The homoscedasticity assumption is not used to show unbiasedness of the
OLS estimators

• Without homoscedasticity, OLS no longer has the minimum mean
squared errors, which means that the estimated standard errors are
biased. In other words, the distribution of the coefficients is probably
larger than we thought.

• It’s a problem for test and prediction for we may be overconfindent.

2. See Huntington-Klein (2021) chapter ”Your standard errors are probably wrong”Fougère & Heim 2022-2023
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The ordinary least square (OLS)

Hypotheses testing and confidence intervals
• Heteroskedasticity robust standard errors assume that the (N ×N)

matrix E
[
ee′|X

]
is diagonal, meaning there is no correlation between

errors accross observations (White 1980).
• You may have groups of observations that belong to certain groups which

may mean that there is dependence in the error within groups.
• We can correct for these ”clustering” effect using Moulton (1986)

adjustment if you assume homoscedasticity or Liang and Zeger (1986) for
heteroskedasticity-cluster robust standard error.

• Using R, we obtain these correction using e.g. the sandwich package or
estimatr easy command

library(estimatr)
lm_robust(dep ~ cov1 + cov2, data = mydatabase, clusters = "myclustervar")

More on that next week
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Estimations: Special focus on regressions

The Frisch Waugh Lovell (FWL) theorem
• Consider a dependent variable Y and two sets of regressors X1 and X2

and the linear model

Y = Xβ + ε = X1β1 +X2β2 + ε

• Frisch and Waugh (1933) then Lovell (2010) prove the following results
(Greene 2012, p.73):

Theorem
In the linear least squares regression of vector Y on two sets of variables, X1

and X2, the subvector β2 is the set of coefficients obtained when the residuals
from a regression of Y on X1 alone and regressed on the set of residuals
obtained when each column of X2 is regressed on X1.

• This theorem is fundamental to modern econometrics
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The Frisch Waugh Lovell (FWL) theorem

Implications
• The Frisch-Waugh-Lowell theorem has several important implications for

econometric practice, including:
1 It provides a theoretical justification for the use of OLS in multiple linear

regression analysis.
2 It shows that the OLS estimators are consistent, asymptotically normal,

and unbiased under certain assumptions.
3 It demonstrates the importance of proper specification of the regression

model, including the choice of independent variables and functional form.
• The Frisch-Waugh-Lowell theorem is a fundamental result in

econometrics that provides a basis for the use of OLS in multiple linear
regression analysis. Its implications for econometric practice underscore
the importance of careful model specification and the need for rigorous
testing of the underlying assumptions.
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The Frisch Waugh Lovell (FWL) theorem

Estimating treatment effect using OLS in randomized
experiments

• Consider the triplet (Yi, Di,Xi) of observables from a randomized
control trial where Yi are outcomes, Di is the treatment, Xi a set of
covariates, and let εi denote a mean-zero random error component.

• There are several regressions you can run to estimate treatment effects.
1 Pooled regression adjustment (Athey and Imbens 2017b): Estimate the

equation Yi = α+ βDi +X′γ + εi. Adding the variables Xi to the
simple regression does not change the probability limit provided Di and
Xi are uncorrelated, which follows under random assignment.

2 Saturated regression (Angrist and Pischke 2008):A saturated regression
model is one in which there is a parameter for each unique combination of
the covariates. In this case, the regression fits the CEF perfectly
(whatever the distribution of Y) because the CEF is a linear function of
the dummy categories. We estimate Yi =

∑
x Di ×Xiαx + βDi + εi

3 Linear projection (Lin 2013): Estimate two separate regressions for
treated and controls: µ̂1(Ẋ) = α̂1 +X′

iγ̂1 and µ̂0(
˙̇Xi) = α̂0 + Ẋiγ̂0,

then the treatment effect is β̂ = µ̂1(Ẋ)− µ̂0(Ẋ) where Ẋ = X − X̄
4 Full regression adjustment (Negi and Wooldridge 2021): Estimate

Yi = α+ βDi + Ẋiγ +Di × Ẋiδ + εi The demeaning of the covariates
ensures that the coefficient on D is the treatment effect. This regression
is also convenient for obtaining (cluster) heteroscedasticity-robust
standard errors.
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The Frisch Waugh Lovell (FWL) theorem

Estimating treatment effect using OLS in randomized
experiments

N Regressions usually do not estimate ATE or ATT but variance-weighted
treatment effects.

N Under the assumption of saturated in the covariates, the coefficient on the
treatment in a linear regression is a weighted average of the within-stratum
effects.

• Why? OLS is a minimum-variance estimator. Thus, it gives more weight to
strata with lower expected variance in their estimates. That is, it gives higher
weight to more precise within-strata estimates.

• Lessons from Negi and Wooldridge (2021)
• OLS estimation using a random sample always consistently estimates the

parameters in a population linear projection (subject to the mild finite
second moment assumptions and the non-singularity of X). This is true
regardless of the nature of Y(D) or X.

• Estimating separate regressions for the control and treated groups is
guaranteed to do no worse than both the simple difference-in-means
estimator and just including the covariates in additive fashion.

• Usually, the estimator that includes a full set of interactions strictly
improves asymptotic efficiency.
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Wrap-up

From Randomisation to regressions and policy evaluation
• The formal analysis of randomized control trial derived from the work of

Fischer, Neyman and Rubin and have been widely used across the world
to estimate the effect of various policies and treatment.

• Well-conducted RCT remove selection bias and retrieve the ATE on the
population of interest.

• The conditional independence assumption supplement or mimic RCTs to
estimate causal parameters conditional on a set of observables

• Regressions can be used to estimate causal parameters and the
Frisch-Waugh-Lovell theorem provides a basis for the use of OLS in
multiple linear regression analysis for conditional independence

Next week: More advanced stuff on RCT
• To read: mandatory:S. Athey and G. W. Imbens. 2017a. “Chapter 3 -

The Econometrics of Randomized Experiments.” In Handbook of
Economic Field Experiments, edited by Abhijit Vinayak Banerjee and
Esther Duflo, 1:73–140. Handbook of Field Experiments. North-Holland,
January 1, 2017

• To read: mandatory: Bruno Crépon et al. 2013b. “Do Labor Market
Policies Have Displacement Effects? Evidence from a Clustered
Randomized Experiment *.” The Quarterly Journal of Economics 128, no.
2 (May 1, 2013): 531–580
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Derivating the Neyman variance forumula for the ATE

Some reminders
• The variance of a random variable X is defined as:

V[X] = E
[
X − E[X]

]2
• T he variance is used to quantify the amount of variation or dispersion

of a set of data values Literally speaking, the variance is the average of
the squared difference between all the possible values of the random
variable and its expected value In a way, it can be viewed as “the square
of the distance to the mean” The standard deviation is the square root of
the variance It is expressed in the same unit as the mean

• The sample analogue of the variance is:

ˆV ar(X) ≡ S2 =
1

N

N∑
i=1

(Yi − Ȳi)
2
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Derivating the Neyman variance forumula for the ATE

Estimated variance of outcomes
• The estimated variance of the outcome Y (1),in the treatment group is

(by definition):

ˆV ar (Y (1)) ≡ S2
1 =

1

N1

N1∑
i=1

(Yi(1)− ¯Yi(1))
2

• The estimated variance of the mean outcome ¯Yi(1) in the treatment
group is:

ˆV ar
( ¯Yi(1)

)
= ˆV ar

(
1

N1

∑N1
i=1 Yi(1)

)
= 1

N2
1

ˆV ar
(∑N1

i=1 Yi(1)
)

because V[aX] = a2V[X]

= 1
N2

1

∑N1
i=1

ˆV ar (Yi(1)) if observations are i.i.d.

=
S2
1

N2
1

• Same computation for Y (0)

Fougère & Heim 2022-2023
Sciences Po 60 / 71



Neyman’s Variance Derivation of the Least Square estimator and its variance

Derivating the Neyman variance forumula for the ATE

Estimated variance of outcomes
• The variance of a linear combination of two random variables X and Y is:

V[aX + bY ] = a2V[(]X) + b2V[Y ] + 2ab Cov(X,Y )

where Cov(X,Y ) = E[XY ]− E[X]E[Y ]
• When X and Y are independent, Cov(X,Y ) = 0 Since

E[XY ] = E[X]E[Y ].
• Therefore,

ˆV ar
(
Ȳ (1)− Ȳ (0)

)
= ˆV ar

(
Ȳ (1)

)
+ ˆV ar

(
Ȳ (0)

)
+ 2 ˆCov

(
Ȳ (1), Ȳ (0)

)
• In a fixed population framework, with the number of treated units fixed

at N1, the two events – unit i being treated and unit i� being treated –
are not independent.

• If we consider the population ATE and our sample as random i.i.d. from
the population, ˆCov

(
Ȳ (1), Ȳ (0)

)
= 0.

• considering the N observed units as a simple random sample from an
infinite super-population, the Neyman estimator is an unbiased estimate
of the sampling variance of the estimator of the super-population average
treatment effect (See formal proof in Imbens and Rubin (2015)[Chapter
6, Appendix B].

Back to Variance

Fougère & Heim 2022-2023
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Outline

8 Derivating the Neyman variance forumula for the ATE

9 Derivation of the Least Square estimator and its variance
Finding β
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Derivation of the Least Square estimator and its variance

Finding β

Consider the general equation:

Yi = X′
iβ + µi (5)

where Y is an n× 1 outcome vector, X is an n× p matrix of covariates, β is
an p× 1 vector of coefficients, and µ is an n× 1 vector of errors. Our purpose
was then to estimate the theoretical value of β and thus, find the solution to
the problem:

β = arg min
b

E[(Yi −X ′
ib)

2]

Using the first order condition : E[Xi(Yi −X ′
ib)] = 0 the solution for b can be

written :
E[XiX

′
i

]−1E[XiYi] (6)
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Derivation of the Least Square estimator and its variance

Finding β

In the simplest case where X only contains one variable x and the constant,
the estimation of the coefficient is βx = cov(Yi,xi)

V[xi]
and the intercept is

α = E[(]Yi)− βxE[Xi].
Because matrix notation is not always easy, it can be useful to write that the
coefficient of the kth regressor is equal to:

βk =
cov(Yi, x̃pi)

V[x̃pi]

Where x̃pi is the residual from a regression of xki on all the other covariates.
This formula reveals that each coefficient in a multivariate regression is the
bivariate slope coefficient of the corresponding regressor after ”partialling out”
all the other variables (Angrist and Pischke 2008) and can be interpreted
ceteris paribus.
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Derivation of the Least Square estimator and its variance

Finding β

In practice we generally do not have access to population data and therefore
draw statistical inference using samples.
The sample equivalent of this quantity is given by :

β̂ =

N∑
i=1

XiX
′
i
−1

N∑
i=1

XiYi = [X′X]−1[X′Y ]

We can derive an explicit function that represents the variance of our
estimates, V[β|X], given that X is fixed.
What we are interested in is V[β|X], which is the variance of all of our
estimated coefficients β̂ and the covariance between our coefficients. We can
represent this as:

V[β̂|X] =


V[β̂0|X] cov(β̂0, β̂1|X) · · · cov(β̂0, β̂P |X)

cov(β̂1, β̂0|X) V[β̂1|X] · · · cov(β̂1, β̂P |X)
...

...
. . .

...
cov(β̂P , β̂0|X) cov(β̂P , β̂1|X) · · · V[β̂P |X]


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Neyman’s Variance Derivation of the Least Square estimator and its variance

Derivation of the Least Square estimator and its variance

Finding β

Our goal is to estimate this matrix as it contains some interesting elements
especially the first diagonal which contains the variance of each estimated
coefficient which will allow us to compute standards errors :

SE(β̂|X) =



√
V[β̂0|X]√
V[β̂1|X]

...√
V[β̂P |X]


To get there, we start by rewritting the OLS estimand of the β matrix :

β̂ = [X′X]−1[X′Y ]

= [X′X]−1[X′(Xβ + µ)]

= [X′X]−1[X′Xβ]︸ ︷︷ ︸
=Iβ

+[X′X]−1[X′µ]

= β + [X′X]−1[X′µ]

β̂ − β = [X′X]−1[X′µ]

Now we write the variance formula conditional on the support X:

V[β̂|X] = E[(β̂ − β)(β̂ − β)′|X]

= E
[
[X′X]−1[X′µ]([X′X]−1[X′µ])′|X

]
= E

[
[X′X]−1X′µµ′X[X′X]−1|X

]

Which give us the variance covariance matrix of the betas:

V[β̂|X] = [X′X]−1E
[
X′µµ′X|X

]
[X′X]−1 (7)
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Derivation of the Least Square estimator and its variance

Finding β

While we have X, we do not have E
[
X′µµ′X|X

]
, which is the

variance-covariance matrix of the errors. This matrix represents all of the
unobserved errors correlate with each other and their variance.
Moreover, so far we didn’t use the properties of the OLS estimated regarding
the correlation of the residual with regressors etc. This matrix here is not
identified for it has N ×N unknown parameters that define the variance of
each error and the correlation of errors. In theory, we could know the
correlation between the error across observations, known as serial correlation,
or whether variance of the errors is constant across observations, known as
homoscedasticity.
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Finding β

The group structure problem

• Heteroskedasticity robust standard errors assume that the (N ×N)
matrix E

[
εε′|X

]
is diagonal, meaning there is no correlation

between errors accross observations. Memo

• This assumption is false in many settings among which:
• Non-stationary time series or panel data
• Identical values of one or more regressors for groups of

individuals = clusters
• . . .

• From a setting where potentially all errors are correlated together,
we cannot use the estimated residuals as in the robust SE (White
1980) (because

∑
X̂iϵ̂i = 0 by construction)

• Hence, one has to allow correlation up to a certain point: in time
(Newey and West 1987), or among members of a group (Kloek
1981; Moulton 1986)Fougère & Heim 2022-2023
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Finding β

The group structure problem
• Assuming homoscedasticity:

E
[
εε|X

]
≡ Ωij =


0 if Ci ̸= Cj

ρσ2 if Ci = Cj , i ̸= j
σ2 if i = j

• Suppose just 2 groups, this matrix looks something like:

Ωij =



σ2
(1,1)1 · · · ρσ2

(1,n1)1
0 · · · 0

...
. . .

...
...

. . .
...

ρσ2
(n1,1)1

· · · σ2
(n1,n1)1

0 · · · 0

0 · · · 0 σ2
(n1+1,n1+1)2 · · · ρσ2

(n1+1,N)2

...
. . .

...
...

. . .
...

0 · · · 0 ρσ2
(N,1)2 · · · σ2

(N,N)2


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Neyman’s Variance Derivation of the Least Square estimator and its variance

Finding β

Assuming homoscedasticity & group size
• Assuming homoscedasticity & same group size:

Vkloek(β̂|X) = VOLS ×
(
1 + ρερX

N

C

)
(8)

• Where ρε is the within cluster correlation of the errors
• Where ρX is the within cluster correlation of the regressors

Relaxing homoscedasticity
• The cluster adjustment by Liang and Zeger 1986 used in most statistical

packages:

VLZ(β̂|X) =
(
X′X

)−1
( C∑

c=1

X′
cΩcXc

)(
X′X

)−1 (9)
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Neyman’s Variance Derivation of the Least Square estimator and its variance

Finding β

Estimated versions
• The estimated version of the so called robust (EHW) variance is:

V̂EWH(β̂) =
(
X′X

)−1
( N∑

i=1

(Yi − β̂′Xi)
2XiX

′
i

)(
X′X

)−1 (10)

• The estimated version of the cluster robust (LZ) variance is:

V̂LZ(β̂) =
(
X′X

)−1
( C∑

c=1

( ∑
i:Ci=c

(Yi − β̂′Xi)Xi
′︸ ︷︷ ︸

ε̂Xi

)
( ∑
i:Ci=c

′
(Yi − β̂′Xi)Xi︸ ︷︷ ︸

ε̂Xi

)′)(
X′X

)−1 (11)

• These are the main estimators used by applied researchers between which one
has to choose.
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